
Introduction to the Analysis of
Algorithms

Manolis Koubarakis

Data Structures and Programming
Techniques

1

Outline

• How can we measure and compare algorithms
meaningfully?

• O notation

• Analysis of a few interesting algorithms

Data Structures and Programming
Techniques

2

Introduction

• How do we measure and compare algorithms
meaningfully given that the same algorithm
will run at different speeds and will require
different amounts of space when run on
different computers or when implemented in
different programming languages?

• Example: let us consider a sorting algorithm
for sorting an array A[0:n-1].

Data Structures and Programming
Techniques

3

Selection Sorting Algorithm

void SelectionSort(InputArray A)

{

int MinPosition, temp, i, j;

for (i=n-1; i>0; --i){

MinPosition=i;

for (j=0; j<i; ++i){

if (A[j] < A[MinPosition]){

MinPosition=j;

}

}

temp=A[i];

A[i]=A[MinPosition];

A[MinPosition]=temp;

}

}

Data Structures and Programming
Techniques

4

Comments

• The previous algorithm sorts the elements of an input
array A in descending order using the technique of
selection sorting.

• The algorithm proceeds in steps controlled by the
outer for statement. In each such step the i-th
element of the array is interchanged with the minimum
element among elements 0 to i-1.

• The minimum element is computed by the inner for
statement.

• The interchanging steps start with the last element of
the array and proceed down to the first element.

Data Structures and Programming
Techniques

5

Running Times in Seconds to Sort an Array of
2000 Integers (around the Year 1995 ☺)

• In C we can use a library function like clock() from time.h to measure
the CPU time it takes to execute some part of our program (see
https://stackoverflow.com/questions/459691/best-timing-method-in-
c?noredirect=1&lq=1 for discussion).

• Computers A, B, etc. up to E are progressively faster.
• The algorithm runs faster on faster computers.

Type of Computer Time

Computer A 51.915

Computer B 11.508

Computer C 2.382

Computer D 0.431

Computer E 0.087

Data Structures and Programming
Techniques

6

https://stackoverflow.com/questions/459691/best-timing-method-in-c?noredirect=1&lq=1

More Measurements

• In addition to trying different computers, we
could try different programming languages
and different compilers.

• Shall we take all these measurements to
decide whether an algorithm is better than
another one?

Data Structures and Programming
Techniques

7

A More Meaningful Criterion

• We can observe that algorithms usually consume
resources (e.g., time and space) in some fashion
that depends on the size of the problem solved.

• Usually, the bigger the size of a problem, the
more resources an algorithm consumes.

• We usually use 𝒏 to denote the size of the
problem.

• Examples of sizes: the length of a list that is
searched, the number of items in an array that is
sorted etc.

Data Structures and Programming
Techniques

8

SelectionSort Running Times in Milliseconds on
Two Types of Computers (around the Year 1995 again)

Array Size 𝒏 Computer 1 Computer 2

125 12.5 2.8

250 49.3 11.0

500 195.8 43.4

1000 780.3 172.9

2000 3114.9 690.5

Data Structures and Programming
Techniques

9

Two Curves Fitting the Previous Data

• If we plot these numbers on a graph and try to
fit curves to them, we find that they lie on the
following two curves:
𝑓1 𝑛 = 0.0007772𝑛2 + 0.00305𝑛 + 0.001
𝑓2 𝑛 = 0.0001724𝑛2 + 0.00040𝑛 + 0.100

Data Structures and Programming
Techniques

10

𝑓1 𝑥

Data Structures and Programming
Techniques

11

𝑓2 𝑥

Data Structures and Programming
Techniques

12

Discussion

• The curves on the previous slide have the
quadratic form 𝑓 𝑛 = 𝑎𝑛2 + 𝑏𝑛 + 𝑐.

• The difference between the two curves is that
they have different constants 𝑎, 𝑏 and 𝑐.

• Even if we implement SelectionSort on
another computer using another programming
language and another compiler, the curve that we
will get will be of the same form.

• So, even though the particular measurements will
change under different circumstances, the shape
of the curve will remain the same.

Data Structures and Programming
Techniques

13

Complexity Classes

• The running times of various algorithms
belong to different complexity classes.

• Each complexity class is characterized by a
different family of curves.

• All of the curves in a given complexity class
share the same basic shape. The shape is
characterized by an equation that gives
running times as a function of problem size.

Data Structures and Programming
Techniques

14

𝑂-notation

• This notation is used in Computer Science for
taking about the time complexity of an
algorithm.

• For SelectionSort, the time complexity is
𝑂 𝑛2 .

• We find this complexity by taking the
dominant term 𝑎𝑛2 of the expression 𝑎𝑛2 +
𝑏𝑛 + 𝑐 and throwing away the constant
coefficient 𝑎.

Data Structures and Programming
Techniques

15

𝑂-notation (cont’d)

• Let us consider the equation 𝑓 𝑛 = 𝑎𝑛2 +
𝑏𝑛 + 𝑐 with 𝑎 = 0.0001724, 𝑏 = 0.0004 and
𝑐 = 0.1. Then we have the following table:

Data Structures and Programming
Techniques

16

𝒏 𝒇(𝒏) 𝒂𝒏𝟐 𝒏𝟐 term as %
of total

125 2.8 2.7 94.7

250 11.0 10.8 98.2

500 43.4 43.1 99.3

1000 172.9 172.4 99.7

2000 690.5 689.6 99.9

𝑂-notation (cont’d)

• We conclude that the lesser term 𝑏𝑛 + 𝑐
contributes very little to the value of 𝑓(𝑛) even
though 𝑐 is 250 times more than 𝑏 and 𝑏 is more
than two times 𝑎. Thus, we can ignore this lesser
term.

• We will also ignore the constant of
proportionality 𝑎 in 𝑎𝑛2 since we want to
concentrate in the general shape of the curve. 𝒂
will differ for different implementations on
different computers.

Data Structures and Programming
Techniques

17

Some Common Complexity Classes

𝑶-notation Adjective Name

𝑂(1) Constant

𝑂(log 𝑛) Logarithmic

𝑂(𝑛) Linear

𝑂(𝑛 log 𝑛) n log n

𝑂(𝑛2) Quadratic

𝑂(𝑛3) Cubic

𝑂(2𝑛) Exponential

𝑂(10𝑛) Exponential

𝑂(22
𝑛
) Doubly exponential

Data Structures and Programming
Techniques

18

Comparing Complexity Classes

• Let us assume that we have an algorithm A
that runs on a computer that executes one
step of this algorithm every microsecond.

• Let us assume that 𝑓 𝑛 is the number of
steps required by A to solve a problem of size
𝑛.

• Then we have the following table.

Data Structures and Programming
Techniques

19

Running Times for Algorithm A

𝒇(𝒏) 𝒏 = 𝟐 𝒏 = 𝟏𝟔 𝒏 = 𝟐𝟓𝟔 𝒏 = 𝟏𝟎𝟐𝟒

1 1 μsec 1 μsec 1 μsec 1 μsec

𝑙𝑜𝑔2𝑛 1 μsec 4 μsec 8 μsec 10 μsec

𝑛 2 μsec 16 μsec 256 μsec 1.02 ms

𝑛 𝑙𝑜𝑔2𝑛 2 μsec 64 μsec 2.05 ms 10.2 ms

𝑛2 4 μsec 25.6 μsec 65.5 ms 1.05 secs

𝑛3 8 μsec 4.1 ms 16.8 ms 17.9 min

2𝑛 4 μsec 65.5 ms 3.7 x 1063

years
3.7 x 10294

years

Data Structures and Programming
Techniques

20

Size of Largest Problem Algorithm A
Can Solve in 𝑇𝑖𝑚𝑒 ≤ 𝑇

Number of steps is T = 1 min T = 1hr

𝑛 6 x 107 3.6 x 109

𝑛 𝑙𝑜𝑔2𝑛 2.8 x 106 1.3 x 108

𝑛2 7.75 x 103 6.0 x 104

𝑛3 3.91 x 102 1.53 x 103

2𝑛 25 31

10𝑛 7 9

Data Structures and Programming
Techniques

21

Time Complexity Discussion

• 1: This is the case when all the statements in a program are
executed a constant number of times.

• 𝐥𝐨𝐠𝒏 : When the time complexity of an algorithm is logarithmic,
the algorithm runs a little bit slower when 𝑛 increases. This time
complexity is found in algorithms that solve a problem by
transforming it into a series of smaller problems, reducing in each
step the size of the problem by a constant amount. Every time 𝑛
doubles, log 𝑛 increases only by a constant.

• 𝒏: When the time complexity of an algorithm is linear what
happens usually is that a small part of the processing takes place for
each element of the input. When 𝑛 doubles, the running time of
the algorithm doubles too. This time complexity is optimal for an
algorithm that needs to process 𝑛 inputs or to output 𝑛 outputs.

Data Structures and Programming
Techniques

22

Time Complexity Discussion (cont’d)

• 𝒏 𝐥𝐨𝐠𝒏 : This time complexity appears when an algorithm solves a
problem by dividing it into smaller problems and combining the partial
solutions. When 𝑛 doubles, the time complexity more than doubles (but it
is not very far from the double).

• 𝒏𝟐: When the time complexity is quadratic, the algorithm is practically
useful only for small problems. Quadratic running times usually appear in
algorithms that process pairs of elements of a problem (e.g., with two
nested loops). When 𝑛 doubles, the running time increases four times.

• 𝒏𝟑: Similarly, an algorithm that processes triples of elements of a problem
(e.g., usually with three nested loops) has cubic running time. It is useful
only for small problem sizes. When 𝑛 doubles, the running time increases
eight times.

• 𝟐𝒏: When the time complexity of an algorithms is exponential, the
algorithm can be used in practice only for very small problem sizes. This is
usually the case with algorithms that solve a problem by a brute-force
method. When 𝑛 doubles, the running time of the algorithm becomes the
square of the previous time.

Data Structures and Programming
Techniques

23

Linear vs. Quadratic vs. Cubic Time
Complexity (Logarithmic Scale Plot)

Data Structures and Programming
Techniques

24

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)
Cubic

Quadratic

Linear

Seven Complexity Functions

Data Structures and Programming
Techniques

25

g(n) = 2n

g(n) = 1

g(n) = log n

g(n) = n

g(n) = n2

g(n) = n3

g(n) = n log n

Time Complexity Cases

• We may consider the following cases:

– Worst case

– Best case

– Average case

Data Structures and Programming
Techniques

26

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e
1000 2000 3000 4000

Input Size

best case

average case

worst case

Comments

• We usually study worst case time complexity
because it is easier than average case and
more important for applications.

Data Structures and Programming
Techniques

27

Formal Definition of 𝑂-notation

• We say that 𝒇(𝒏) is 𝑶(𝒈 𝒏) if there exist two
positive constants 𝐾 and 𝑛0 such that
|𝑓 𝑛 | ≤ 𝐾 𝑔 𝑛 for all 𝑛 ≥ 𝑛0 .

Data Structures and Programming
Techniques

28

Graphically (with K=c)

Data Structures and Programming
Techniques

29

Three Ways of Saying it in Words

• Let us assume that 𝑓 and 𝑔 are positive functions.
Then:
– 𝑓(𝑛) is 𝑂(𝑔 𝑛) provided the curve 𝐾 × 𝑔(𝑛) can be

made to lie above the curve for 𝑓(𝑛) whenever we
are to the right of some big enough value of 𝑛0.

– 𝑓(𝑛) is 𝑂(𝑔 𝑛) if there is some way to choose a
constant of proportionality 𝐾 so that the curve for
𝑓(𝑛) is bounded above by the curve for 𝐾 × 𝑔(𝑛)
whenever 𝑛 is big enough (i.e., when 𝑛 ≥ 𝑛0).

– 𝑓(𝑛) is 𝑂(𝑔 𝑛) if for all but finitely many small
values of 𝑛, the curve for 𝑓(𝑛) lies below the curve for
some suitably large constant multiple of 𝑔 𝑛 .

Data Structures and Programming
Techniques

30

Example of a Formal Proof

• Let us suppose that a sorting algorithm A sorts
a sequence of 𝑛 numbers in ascending order
with number of steps

𝑓 𝑛 = 3 + 6 + 9 +⋯+ 3𝑛.

• We will show that the algorithm runs in 𝑂(𝑛2)
steps.

• Proof: We will first find a closed form for 𝑓 𝑛 .

Data Structures and Programming
Techniques

31

Proof (cont’d)

• Note that 𝑓 𝑛 = 3 + 6 + 9 +⋯+ 3𝑛 =

3 1 + 2 +⋯+ 𝑛 = 3
𝑛(𝑛+1)

2
.

• Then, choosing 𝐾 = 3, 𝑛0 = 1 and 𝑔 𝑛 = 𝑛2,
we can show that for all 𝑛 ≥ 1, the following
inequality holds:

3𝑛(𝑛 + 1)

2
≤ 3𝑛2

Data Structures and Programming
Techniques

32

Proof (cont’d)

• Multiplying both sides of the above inequality

with
2

3
gives 𝑛2 + 𝑛 ≤ 2𝑛2.

• Subtracting 𝑛2 from both sides gives 𝑛 ≤ 𝑛2.

• Dividing this inequality by 𝑛 gives 𝑛 ≥ 1.

• The proof is now complete.

Data Structures and Programming
Techniques

33

Practical Shortcuts for Manipulating
𝑂-notation

• In practice we can deal with 𝑂-notation in an
easier way by separating the expression for
𝑓(𝑛) into a dominant term and lesser terms
and throwing away the lesser terms.

• In other words: 𝑂 𝑓 𝑛 =

𝑂 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑡𝑒𝑟𝑚 ± 𝑙𝑒𝑠𝑠𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 =
𝑂(𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑡𝑒𝑟𝑚)

Data Structures and Programming
Techniques

34

Scale of Strength for 𝑂-notation

• We can rank the usual complexity functions on
the following scale of strength so it is easy to
determine the dominant term and the lesser
terms:
𝑂(1) < 𝑂(log 𝑛) < 𝑂 𝑛 < 𝑂(𝑛 log 𝑛)
< 𝑂(𝑛2) < 𝑂(𝑛3) < 𝑂(2𝑛) < 𝑂(10𝑛)

Data Structures and Programming
Techniques

35

Example

• 𝑂 6𝑛3 − 15𝑛2 + 3𝑛 log 𝑛 = O 6𝑛3 =

𝑂(𝑛3)

• Let us see why we are allowed to do the
above. Notice that we have 6𝑛3 − 15𝑛2 +
3𝑛 log 𝑛 < 6𝑛3 + 3𝑛 log 𝑛 < 6𝑛3 + 3𝑛3 < 9 𝑛3

• This is the inequality that the definition of 𝑂-
notation needs for 𝐾 = 9 and 𝑛 ≥ 1.

Data Structures and Programming
Techniques

36

Ignoring Bases of Logarithms

• When we use 𝑂-notation, we can ignore the
bases of logarithms and assume that all
logarithms are in base 2.

• Changing the bases of logarithms involves
multiplying by constants, and constants of
proportionality are ignored by 𝑂-notation.

• For example, log10 𝑛 =
log2 𝑛

log2 10
. Notice now

that
1

log2 10
is a constant.

Data Structures and Programming
Techniques

37

𝑂(1)

• It is easy to see why the 𝑂(1) notation is the
right one for constant time complexity.

• Suppose that we can prove that an algorithm
A runs in a number of steps 𝑓(𝑛) that are
always less than 𝐾 steps for all 𝑛. Then
𝑓(𝑛) ≤ 𝐾 × 1 for all all 𝑛 ≥ 1. Therefore 𝑓(𝑛)
is 𝑂(1).

Data Structures and Programming
Techniques

38

Some Algorithms and Their Complexity

• Sequential search

• Binary search

• Selection sort

• Recursive selection sort

• Towers of Hanoi

Data Structures and Programming
Techniques

39

Analysis of Sequential Searching

• Suppose we have an array 𝐴[0: 𝑛 − 1] that
contains distinct keys 𝐾𝑖 1 ≤ 𝑖 ≤ 𝑛 and
assume that 𝐾𝑖 is stored in position 𝐴 𝑖 − 1 .

• Problem: we are given a key 𝐾 and we would
like to determine its position in 𝐴 0: 𝑛 − 1 .

Data Structures and Programming
Techniques

40

An Algorithm for Sequential Searching

#define n 100

typedef int Key;

typedef Key SearchArray[n];

int SequentialSearch(Key K, SearchArray A)

{

int i;

for (i=0; i<n; ++i){

if (K==A[i]) return i;

}

return(-1);

}

Data Structures and Programming
Techniques

41

Complexity Analysis

• The amount of work done to locate key 𝐾
depends on its position in 𝐴 0: 𝑛 − 1 .

• For example, if 𝐾 is in 𝐴[0], then we need only
one comparison.

• In general, if 𝐾 is in 𝐴[𝑖 − 1], then we need
𝑖 comparisons.

Data Structures and Programming
Techniques

42

Complexity Analysis (cont’d)

• Best case: This is when 𝐾 is in 𝐴 0 . The
complexity is 𝑂 1 .

• Worst case: This is when 𝐾 is in 𝐴 𝑛 − 1 . The
amount of work is 𝑎𝑛 + 𝑏 where 𝑎 and 𝑏 are
constants. Therefore the complexity is 𝑂 𝑛 .

• Average case: Let us assume that each key is
equally likely to be used in a search. The average
can then be computed by taking the total of all
the work done for finding all the different keys
and dividing by 𝑛.

Data Structures and Programming
Techniques

43

Complexity Analysis (cont’d)

• The work needed to find the 𝑖-th key 𝐾𝑖 is of the
form 𝑎 𝑖 + 𝑏 for some constants 𝑎 and 𝑏.
Therefore:

𝑇𝑜𝑡𝑎𝑙 = σ𝑖=1
𝑛 𝑎𝑖 + 𝑏 = 𝑎σ𝑖=1

𝑛 𝑖 + σ𝑖=1
𝑛 𝑏 =

= 𝑎
𝑛(𝑛 + 1)

2
+ 𝑏𝑛

• Now the average is:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙

𝑛
= 𝑎

𝑛+1

2
+ 𝑏 =

𝑎

2
𝑛 +

𝑎

2
+ 𝑏

• Therefore, the average is 𝑂 𝑛 .

Data Structures and Programming
Techniques

44

Binary Search

• For sorted arrays, we have an algorithm more
efficient than sequential search: binary
search.

Data Structures and Programming
Techniques

45

Binary Search (cont’d)

• The problem to be addressed in binary searching is to find
the position of a search key K in an ordered array A[0:n-
1] of distinct keys arranged in ascending order:
A[0] < A[1] < … < A[n-1].

• The algorithm chooses the key in the middle of A[0:n-
1], which is located at A[Middle], where
Middle=(0+(n-1))/2, and compares the search key K
and A[Middle].

• If K==A[Middle], the search terminates successfully.
• If K < A[Middle] then further search is conducted

among the keys to the left of A[Middle].
• If K > A[Middle] then further search is conducted

among the keys to the right of A[Middle].

Data Structures and Programming
Techniques

46

Iterative Binary Search

int BinarySearch(Key K)

{

int L, R, Midpoint;

/* Initializations */

L=0;

R=n-1;

/* While the interval L:R is non-empty, test key K against the middle key */

while (L<=R){

Midpoint=(L+R)/2;

if (K==A[Midpoint]){

return Midpoint;

} else if (K > Midpoint) {

L=Midpoint+1;

} else {

R=Midpoint-1;

}

}

/* If the search interval became empty, key K was not found */

return -1;

}

Data Structures and Programming
Techniques

47

Recursive Binary Search

int BinarySearch (Key K, int L, int R)

{

/* To find the position of the search key K in the subarray

A[L:R]. Note: To search for K in A[0:n-1], the initial call

is BinarySearch(K, 0, n-1) */

int Midpoint;

Midpoint=(L+R)/2;

if (L>R){

return -1;

} else if (K==A[Midpoint]){

return Midpoint;

} else if (K > A[Midpoint]){

return BinarySearch(K, Midpoint+1, R);

} else {

return BinarySearch(K, L, Midpoint-1);

}

}

Data Structures and Programming
Techniques

48

Complexity

• Let us compute the running time of recursive binary
search.

• We call an entry of our array a candidate if, at the
current stage of the algorithm, we cannot rule out that
this entry has key equal to K.

• We observe that a constant amount of primitive
operations are executed at each recursive call of
function BinarySearch.

• Hence the running time is proportional to the number
of recursive calls performed.

• Moreover, the number of remaining candidates is
reduced by at least half with each recursive call.

Data Structures and Programming
Techniques

49

Complexity (cont’d)

• Initially, the number of candidate entries is 𝑛. After the
first call to BinarySearch, it is at most

𝑛

2
. After the

second call, it is at most
𝑛

4
and so on.

• In general, after the 𝑖-th call to BinarySearch, the
number of candidate entries is at most

𝑛

2𝑖
.

• In the worst case (unsuccessful search), the recursive
calls stop when there are no more candidate entries.
Hence, the maximum number of recursive calls
performed, is the smallest integer 𝑚 such that

𝑛

2𝑚
< 1.

Data Structures and Programming
Techniques

50

Complexity (cont’d)

• Equivalently, 2𝑚 > 𝑛.

• Taking logarithms in base 2, we have 𝑚 >
log 𝑛 .

• Thus, we have 𝑚 = log 𝑛 +1 which implies
that the complexity of recursive
BinarySearch is 𝑂(log 𝑛).

• The complexity of iterative BinarySearch
is also 𝑂(log 𝑛).

Data Structures and Programming
Techniques

51

Selection Sorting Algorithm

void SelectionSort(InputArray A)

{

int MinPosition, temp, i, j;

for (i=n-1; i>0; --i){

MinPosition=i;

for (j=0; j<i; ++i){

if (A[j] < A[MinPosition]){

MinPosition=j;

}

}

temp=A[i];

A[i]=A[MinPosition];

A[MinPosition]=temp;

}

}

Data Structures and Programming
Techniques

52

Complexity Analysis of SelectionSort

• We start from the inner for statement. The
if statement inside the for takes a constant
amount of time 𝑎. Thus, the for statement
takes 𝑖𝑎 time units.

• Let us now consider the outer for. The
statements inside this for, except the inner
for, take a constant amount of time 𝑏. Thus
all the statements inside the outer for take
time 𝑎𝑖 + 𝑏.

Data Structures and Programming
Techniques

53

Complexity Analysis (cont’d)

• The outer for takes time

𝑖=1

𝑛−1

(𝑎𝑖 + 𝑏) = 𝑎

𝑖=1

𝑛−1

𝑖 +

𝑖=1

𝑛−1

𝑏 =

= 𝑎
𝑛 − 1 𝑛

2
+ 𝑛 − 1 𝑏 =

=
𝑎

2
𝑛2 + 𝑏 −

𝑎

2
𝑛 − 𝑏

• Therefore, the time complexity of the algorithm is
𝑂 𝑛2 .

Data Structures and Programming
Techniques

54

Recursive SelectionSort

/* FindMin is an auxiliary function used by the Selection sort below */

int FindMin(InputArray A, int n)

{

int i,j=n;

for (i=0; i<n; ++i) if (A[i]<A[j]) j=i;

return j;

}

void SelectionSort(InputArray A, int n)

{

int MinPosition, temp;

if (n>0){

MinPosition=FindMin(A,n);

temp=A[n]; A[n]=A[MinPosition]; A[MinPosition]=temp;

SelectionSort(A, n-1)

}

}

Data Structures and Programming
Techniques

55

Analysis of Recursive SelectionSort

• To use this recursive version of
SelectionSort to perform selection sorting
on the array A[0:n-1], we make the function
call SelectionSort(A,n-1).

• The first thing we need to do is to analyze the
running time of function FindMin which finds
the position of the smallest element in the array
A[0:n].

• It is easy to see that the time for this function is
𝑎𝑛 + 𝑏1for suitable constants 𝑎 and 𝑏1.

Data Structures and Programming
Techniques

56

Analysis of Recursive SelectionSort
(cont’d)

• We now analyze the running time of recursive function
SelectionSort.

• Let 𝑇(𝑛) stand for the cost, in time units, of calling
SelectionSort on A[0:n].

• Then the costs in SelectionSort are as follows:

if (n>0){

Cost 𝑎𝑛 + 𝑏1
Cost 𝑏2
Cost 𝑇 𝑛 − 1

}

Data Structures and Programming
Techniques

57

Analysis of Recursive SelectionSort
(cont’d)

• If 𝑏 = 𝑏1 + 𝑏2 then the following recurrence
relation holds for 𝑛 > 0:

𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑇(𝑛 − 1)

• The base case of this recurrence relation is
𝑇 0 = 𝑐 where 𝑐 is the cost of executing
SelectionSort(A,0).

• To solve such recurrence relations, we can use
a method called unrolling.

Data Structures and Programming
Techniques

58

Analysis of Recursive SelectionSort
(cont’d)

𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑇 𝑛 − 1
𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑇 𝑛 − 2

𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑎 𝑛 − 2 + 𝑏 + 𝑇 𝑛 − 3
…

𝑇 𝑛
= 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑎 𝑛 − 2 + 𝑏 +⋯+ 𝑎 ∗ 1 + 𝑏
+ 𝑇 0
𝑇 𝑛
= 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑎 𝑛 − 2 + 𝑏 +⋯+ 𝑎 ∗ 1 + 𝑏
+ 𝑐

Data Structures and Programming
Techniques

59

Analysis of Recursive SelectionSort
(cont’d)

• Rearranging some of the terms so that all those with
coefficients 𝑎 and 𝑏 are collected together, we have:

𝑇 𝑛 = 𝑎𝑛 + 𝑎 𝑛 − 1 + 𝑎 𝑛 − 2 +⋯+ 𝑎 + 𝑛𝑏 + 𝑐

𝑇 𝑛 =

𝑖=1

𝑛

(𝑎𝑖) + 𝑛𝑏 + 𝑐

= 𝑎
𝑛(𝑛 + 1)

2
+ 𝑛𝑏 + 𝑐

=
𝑎

2
𝑛2 +

𝑎

2
+ 𝑏 𝑛 + 𝑐

Data Structures and Programming
Techniques

60

Analysis of Recursive SelectionSort
(cont’d)

• Therefore 𝑇(𝑛) but also 𝑇(𝑛 − 1) is 𝑂 𝑛2 .

Data Structures and Programming
Techniques

61

The Towers of Hanoi

1 2 3

Data Structures and Programming
Techniques

62

A Recursive Solution to the Towers of
Hanoi

void MoveTowers(int n, int start, int finish, int spare)

{

if (n==1){

printf(“Move a disk from peg %1d to peg %1d\n”, start,
finish);

} else {

MoveTowers(n-1, start, spare, finish);

printf(“Move a disk from peg %1d to peg %1d\n”, start,
finish);

MoveTowers(n-1, spare, finish, start);

}

}

Data Structures and Programming
Techniques

63

Analysis of Towers of Hanoi

• Let 𝑛 be the number of disks to be moved.
Then the running time 𝑇(𝑛) of the algorithm
is given by the following recurrence relations:

𝑇 1 = 𝑎
𝑇 𝑛 = 𝑏 + 2𝑇 𝑛 − 1

• We will solve these recurrence relations using
the technique of unrolling plus summation.

Data Structures and Programming
Techniques

64

Analysis of Towers of Hanoi (cont’d)

𝑇 𝑛 = 𝑏 + 2𝑇 𝑛 − 1

𝑇 𝑛 = 𝑏 + 2 𝑏 + 2𝑇 𝑛 − 2

𝑇 𝑛 = 𝑏 + 2𝑏 + 22𝑇(𝑛 − 2)

𝑇 𝑛 = 𝑏 + 2𝑏 + 22 𝑏 + 2𝑇 𝑛 − 3

𝑇 𝑛 = 𝑏 + 2𝑏 + 22𝑏 + 23𝑇 𝑛 − 3
⋯

𝑇 𝑛 = 𝑏 + 2𝑏 + 22𝑏 +⋯+ 2 𝑖−1 𝑏 + 2𝑖𝑇 𝑛 − 𝑖

Data Structures and Programming
Techniques

65

Analysis of Towers of Hanoi (cont’d)

• When 𝑖 = 𝑛 − 1, we have:

𝑇 𝑛 − 𝑖 = 𝑇 𝑛 − 𝑛 − 1 = 𝑇 𝑛 − 𝑛 + 1 = 𝑇 1 = 𝑎

• Therefore, 𝑇 𝑛 can be expressed as follows:

𝑇 𝑛 = 20𝑏 + 21𝑏 + 22𝑏 +⋯+ 2 𝑛−2 𝑏 + 2 𝑛−1 𝑎 =

= σ𝑖=0
𝑛−2 2𝑖𝑏 + 2(𝑛−1)𝑎=

= 𝑏

𝑖=0

𝑛−2

2𝑖 + 2(𝑛−1)𝑎

Data Structures and Programming
Techniques

66

Analysis of Towers of Hanoi (cont’d)

• Now we can see that the sum is a standard
geometric progression. So we will use the fact

that σ𝑘=0
𝑚 𝑥𝑘 =

𝑥𝑚+1−1

𝑥−1
to conclude the

following:

𝑖=0

𝑛−2

2𝑖 =
2(𝑛−1) − 1

2 − 1
= 2(𝑛−1) − 1

Data Structures and Programming
Techniques

67

Analysis of Towers of Hanoi (cont’d)

• Therefore:

𝑇 𝑛 = 𝑏 2(𝑛−1) − 1 + 2(𝑛−1)𝑎

= 𝑎 + 𝑏 2(𝑛−1) − 𝑏 =
𝑎 + 𝑏

2
2𝑛 − 𝑏

• Finally, we can see that 𝑇(𝑛) is 𝑂 2𝑛 .

Data Structures and Programming
Techniques

68

What 𝑂-notation Does Not Tell You

• 𝑂-notation does not apply to small problem
sizes because in this case the constants might
dominate the other terms.

• One can use experimental testing to select
the best algorithm in this case.

• Experimental testing is also useful if we want
to compare algorithms that are in the same
complexity class.

Data Structures and Programming
Techniques

69

Experimental Testing of Algorithms

Data Structures and Programming
Techniques

70

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

Space Complexity

• In a similar way, we can measure the space
complexity of an algorithm.

Data Structures and Programming
Techniques

71

Other notations

• There also other complexity notations such as
𝑜 𝑛 , Θ 𝑛 , Ω 𝑛 ,ω 𝑛 .

• More details in the Algorithms course.

Data Structures and Programming
Techniques

72

Readings

• T. A. Standish. Data Structures, Algorithms and
Software Principles in C.
– Sections 5.6 and Chapter 6

• Robert Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 2

• M.T. Goodrich, R. Tamassia and D. Mount.
Data Structures and Algorithms in C++. 2nd

edition.
– Section 9.3

Data Structures and Programming
Techniques

73

