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Outline

• How can we measure and compare algorithms 
meaningfully?

• O notation
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Introduction

• How do we measure and compare algorithms 
meaningfully given that the same algorithm 
will run at different speeds and will require 
different amounts of space when run on 
different computers or when implemented in 
different programming languages?

• Example: let us consider a sorting algorithm 
for sorting an array A[0:n-1].
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Selection Sorting Algorithm

void SelectionSort(InputArray A)

{   

int MinPosition, temp, i, j;

for (i=n-1; i>0; --i){

MinPosition=i;

for (j=0; j<i; ++i){

if (A[j] < A[MinPosition]){

MinPosition=j;

}

}

temp=A[i]; 

A[i]=A[MinPosition]; 

A[MinPosition]=temp;

}

}
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Comments

• The previous algorithm sorts the elements of an input 
array A in descending order using the technique of 
selection sorting.

• The algorithm proceeds in steps controlled by the 
outer for statement. In each such step the i-th
element of the array is interchanged with the minimum 
element among elements 0 to i-1.

• The minimum element is computed by the inner for 
statement.

• The interchanging steps start with the last element of 
the array and proceed down to the first element.
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Running Times in Seconds to Sort an Array of 
2000 Integers (around the Year 1995 ☺)

• In C we can use a library function like clock() from time.h to measure 
the CPU time it takes to execute some part of our program (see 
https://stackoverflow.com/questions/459691/best-timing-method-in-
c?noredirect=1&lq=1 for discussion).

• Computers A, B, etc. up to E are progressively faster.
• The algorithm runs faster on faster computers.

Type of Computer Time

Computer A 51.915

Computer B 11.508

Computer C 2.382

Computer D 0.431

Computer E 0.087
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More Measurements

• In addition to trying different computers, we 
could try different programming languages 
and different compilers.

• Shall we take all these measurements to 
decide whether an algorithm is better than 
another one?
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A More Meaningful Criterion

• We can observe that algorithms usually consume 
resources (e.g., time and space) in some fashion 
that depends on the size of the problem solved.

• Usually, the bigger the size of a problem, the 
more resources an algorithm consumes.

• We usually use 𝒏 to denote the size of the 
problem.

• Examples of sizes: the length of a list that is 
searched, the number of items in an array that is 
sorted etc.
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SelectionSort Running Times in Milliseconds on 
Two Types of Computers (around the Year 1995 again)

Array Size 𝒏 Computer 1 Computer 2

125 12.5 2.8

250 49.3 11.0

500 195.8 43.4

1000 780.3 172.9

2000 3114.9 690.5
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Two Curves Fitting the Previous Data

• If we plot these numbers on a graph and try to 
fit curves to them, we find that they lie on the 
following two curves:
𝑓1 𝑛 = 0.0007772𝑛2 + 0.00305𝑛 + 0.001
𝑓2 𝑛 = 0.0001724𝑛2 + 0.00040𝑛 + 0.100
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𝑓1 𝑥
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𝑓2 𝑥
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Discussion

• The curves on the previous slide have the 
quadratic form 𝑓 𝑛 = 𝑎𝑛2 + 𝑏𝑛 + 𝑐.

• The difference between the two curves is that 
they have different constants 𝑎, 𝑏 and 𝑐.

• Even if we implement SelectionSort on 
another computer using another programming 
language and another compiler, the curve that we 
will get will be of the same form.

• So, even though the particular measurements will 
change under different circumstances, the shape 
of the curve will remain the same.
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Complexity Classes

• The running times of various algorithms 
belong to different complexity classes. 

• Each complexity class is characterized by a 
different family of curves.

• All of the curves in a given complexity class 
share the same basic shape. The shape is 
characterized by an equation that gives 
running times as a function of problem size.
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𝑂-notation

• This notation is used in Computer Science for 
taking about the time complexity of an 
algorithm.

• For SelectionSort, the time complexity is 
𝑂 𝑛2 .

• We find this complexity by taking the 
dominant term 𝑎𝑛2 of the expression 𝑎𝑛2 +
𝑏𝑛 + 𝑐 and throwing away the constant 
coefficient 𝑎.
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𝑂-notation (cont’d)

• Let us consider the equation 𝑓 𝑛 = 𝑎𝑛2 +
𝑏𝑛 + 𝑐 with 𝑎 = 0.0001724, 𝑏 = 0.0004 and 
𝑐 = 0.1. Then we have the following table:
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𝒏 𝒇(𝒏) 𝒂𝒏𝟐 𝒏𝟐 term as % 
of total

125 2.8 2.7 94.7

250 11.0 10.8 98.2

500 43.4 43.1 99.3

1000 172.9 172.4 99.7 

2000 690.5 689.6 99.9



𝑂-notation (cont’d)

• We conclude that the lesser term 𝑏𝑛 + 𝑐
contributes very little to the value of 𝑓(𝑛) even 
though 𝑐 is 250 times more than 𝑏 and 𝑏 is more 
than two times 𝑎. Thus, we can ignore this lesser 
term.

• We will also ignore the constant of 
proportionality 𝑎 in 𝑎𝑛2 since we want to 
concentrate in the general shape of the curve. 𝒂
will differ for different implementations on 
different computers.
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Some Common Complexity Classes

𝑶-notation Adjective Name

𝑂(1) Constant

𝑂(log 𝑛) Logarithmic

𝑂(𝑛) Linear

𝑂(𝑛 log 𝑛) n log n

𝑂(𝑛2) Quadratic

𝑂(𝑛3) Cubic

𝑂(2𝑛) Exponential

𝑂(10𝑛) Exponential

𝑂(22
𝑛
) Doubly exponential
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Comparing Complexity Classes

• Let us assume that we have an algorithm A 
that runs on a computer that executes one 
step of this algorithm every microsecond.

• Let us assume that 𝑓 𝑛 is the number of 
steps required by A to solve a problem of size 
𝑛.

• Then we have the following table.
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Running Times for Algorithm A

𝒇(𝒏) 𝒏 = 𝟐 𝒏 = 𝟏𝟔 𝒏 = 𝟐𝟓𝟔 𝒏 = 𝟏𝟎𝟐𝟒

1 1 μsec 1 μsec 1 μsec 1 μsec

𝑙𝑜𝑔2𝑛 1 μsec 4 μsec 8 μsec 10 μsec

𝑛 2 μsec 16 μsec 256 μsec 1.02 ms

𝑛 𝑙𝑜𝑔2𝑛 2 μsec 64 μsec 2.05 ms 10.2 ms

𝑛2 4 μsec 25.6 μsec 65.5 ms 1.05 secs

𝑛3 8 μsec 4.1 ms 16.8 ms 17.9 min

2𝑛 4 μsec 65.5 ms 3.7 x 1063

years
3.7 x 10294

years
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Size of Largest Problem Algorithm A 
Can Solve in 𝑇𝑖𝑚𝑒 ≤ 𝑇

Number of steps is T = 1 min T = 1hr

𝑛 6 x 107 3.6 x 109

𝑛 𝑙𝑜𝑔2𝑛 2.8 x 106 1.3 x 108

𝑛2 7.75 x 103 6.0 x 104

𝑛3 3.91 x 102 1.53 x 103

2𝑛 25 31

10𝑛 7 9
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Time Complexity Discussion

• 1: This is the case when all the statements in a program are 
executed a constant number of times.

• 𝐥𝐨𝐠𝒏 : When the time complexity of an algorithm is logarithmic, 
the algorithm runs a little bit slower when 𝑛 increases. This time 
complexity is found in algorithms that solve a problem by 
transforming it into a series of smaller problems, reducing in each 
step the size of the problem by a constant amount. Every time 𝑛
doubles, log 𝑛 increases only by a constant.

• 𝒏: When the time complexity of an algorithm is linear what 
happens usually is that a small part of the processing takes place for 
each element of the input. When 𝑛 doubles, the running time of 
the algorithm doubles too. This time complexity is optimal for an 
algorithm that needs to process 𝑛 inputs or to output 𝑛 outputs.
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Time Complexity Discussion (cont’d)

• 𝒏 𝐥𝐨𝐠𝒏 : This time complexity appears when an algorithm solves a 
problem by dividing it into smaller problems and combining the partial 
solutions. When 𝑛 doubles, the time complexity more than doubles (but it 
is not very far from the double).

• 𝒏𝟐: When the time complexity is quadratic, the algorithm is practically 
useful only for small problems. Quadratic running times usually appear in 
algorithms that process pairs of elements of a problem (e.g., with two 
nested loops). When 𝑛 doubles, the running  time increases four times.

• 𝒏𝟑: Similarly, an algorithm that processes triples of elements of a problem 
(e.g., usually with three nested loops) has cubic running time. It is useful 
only for small problem sizes. When 𝑛 doubles, the running  time increases 
eight times.

• 𝟐𝒏: When the time complexity of an algorithms is exponential, the 
algorithm can be used in practice only for very small problem sizes. This is 
usually the case with algorithms that solve a problem by a brute-force 
method. When 𝑛 doubles, the running time of the algorithm becomes the 
square of the previous time.
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Linear vs. Quadratic vs. Cubic Time 
Complexity (Logarithmic Scale Plot)
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Seven Complexity Functions
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g(n) = 2n

g(n) = 1

g(n) = log n

g(n) = n

g(n) = n2

g(n) = n3

g(n) = n log n



Time Complexity Cases

• We may consider the following cases:

– Worst case

– Best case

– Average case
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Comments

• We usually study worst case time complexity 
because it is easier than average case and 
more important for applications.
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Formal Definition of 𝑂-notation

• We say that 𝒇(𝒏) is 𝑶(𝒈 𝒏 ) if there exist two 
positive constants 𝐾 and 𝑛0 such that 
|𝑓 𝑛 | ≤ 𝐾 𝑔 𝑛 for all 𝑛 ≥ 𝑛0 .
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Graphically (with K=c)
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Three Ways of Saying it in Words

• Let us assume that 𝑓 and 𝑔 are positive functions. 
Then:
– 𝑓(𝑛) is 𝑂(𝑔 𝑛 ) provided the curve 𝐾 × 𝑔(𝑛) can be 

made to lie above the curve for 𝑓(𝑛) whenever we 
are to the right of some big enough value of 𝑛0. 

– 𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if there is some way to choose a 
constant of proportionality 𝐾 so that the curve for 
𝑓(𝑛) is bounded above by the curve for 𝐾 × 𝑔(𝑛)
whenever 𝑛 is big enough (i.e., when 𝑛 ≥ 𝑛0).

– 𝑓(𝑛) is 𝑂(𝑔 𝑛 ) if for all but finitely many small 
values of 𝑛, the curve for 𝑓(𝑛) lies below the curve for 
some suitably large constant multiple of 𝑔 𝑛 .
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Example of a Formal Proof

• Let us suppose that a sorting algorithm A sorts 
a sequence of 𝑛 numbers in ascending order 
with number of steps 

𝑓 𝑛 = 3 + 6 + 9 +⋯+ 3𝑛.

• We will show that the algorithm runs in 𝑂(𝑛2)
steps.

• Proof: We will first find a closed form for 𝑓 𝑛 .
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Proof (cont’d)

• Note that 𝑓 𝑛 = 3 + 6 + 9 +⋯+ 3𝑛 =

3 1 + 2 +⋯+ 𝑛 = 3
𝑛(𝑛+1)

2
.

• Then, choosing 𝐾 = 3, 𝑛0 = 1 and 𝑔 𝑛 = 𝑛2, 
we can show that for all 𝑛 ≥ 1, the following 
inequality holds:

3𝑛(𝑛 + 1)

2
≤ 3𝑛2
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Proof (cont’d)

• Multiplying both sides of the above inequality 

with 
2

3
gives 𝑛2 + 𝑛 ≤ 2𝑛2.

• Subtracting 𝑛2 from both sides gives 𝑛 ≤ 𝑛2.

• Dividing this inequality by 𝑛 gives 𝑛 ≥ 1.

• The proof is now complete.
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Practical Shortcuts for Manipulating 
𝑂-notation

• In practice we can deal with 𝑂-notation in an 
easier way by separating the expression for 
𝑓(𝑛) into a dominant term and lesser terms 
and throwing away the lesser terms.

• In other words: 𝑂 𝑓 𝑛 =

𝑂 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑡𝑒𝑟𝑚 ± 𝑙𝑒𝑠𝑠𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 =
𝑂(𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑡𝑒𝑟𝑚)
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Scale of Strength for 𝑂-notation

• We can rank the usual complexity functions on 
the following scale of strength so it is easy to 
determine the dominant term and the lesser 
terms:
𝑂(1) < 𝑂(log 𝑛) < 𝑂 𝑛 < 𝑂(𝑛 log 𝑛)
< 𝑂(𝑛2) < 𝑂(𝑛3) < 𝑂(2𝑛) < 𝑂(10𝑛)
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Example

• 𝑂 6𝑛3 − 15𝑛2 + 3𝑛 log 𝑛 = O 6𝑛3 =

𝑂(𝑛3)

• Let us see why we are allowed to do the 
above. Notice that we have 6𝑛3 − 15𝑛2 +
3𝑛 log 𝑛 < 6𝑛3 + 3𝑛 log 𝑛 < 6𝑛3 + 3𝑛3 < 9 𝑛3

• This is the inequality that the definition of 𝑂-
notation needs for 𝐾 = 9 and 𝑛 ≥ 1.
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Ignoring Bases of Logarithms

• When we use 𝑂-notation, we can ignore the 
bases of logarithms and assume that all 
logarithms are in base 2.

• Changing the bases of logarithms involves 
multiplying by constants, and constants of 
proportionality are ignored by 𝑂-notation.

• For example, log10 𝑛 =
log2 𝑛

log2 10
. Notice now 

that 
1

log2 10
is a constant.
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𝑂(1)

• It is easy to see why the 𝑂(1) notation is the 
right one for constant time complexity.

• Suppose that we can prove that an algorithm 
A runs in a number of steps 𝑓(𝑛) that are 
always less than 𝐾 steps for all 𝑛. Then 
𝑓(𝑛) ≤ 𝐾 × 1 for all all 𝑛 ≥ 1. Therefore 𝑓(𝑛)
is 𝑂(1).
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Some Algorithms and Their Complexity

• Sequential search

• Binary search

• Selection sort

• Recursive selection sort

• Towers of Hanoi
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Analysis of Sequential Searching

• Suppose we have an array 𝐴[0: 𝑛 − 1] that 
contains distinct keys 𝐾𝑖 1 ≤ 𝑖 ≤ 𝑛 and 
assume that 𝐾𝑖 is stored in position 𝐴 𝑖 − 1 .

• Problem: we are given a key 𝐾 and we would 
like to determine its position in 𝐴 0: 𝑛 − 1 .
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An Algorithm for Sequential Searching

#define n 100

typedef int Key;

typedef Key SearchArray[n];

int SequentialSearch(Key K, SearchArray A)

{

int i;

for (i=0; i<n; ++i){

if (K==A[i]) return i;

}

return(-1);

}
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Complexity Analysis

• The amount of work done to locate key 𝐾
depends on its position in 𝐴 0: 𝑛 − 1 .

• For example, if 𝐾 is in 𝐴[0], then we need only 
one comparison. 

• In general, if 𝐾 is in 𝐴[𝑖 − 1], then we need 
𝑖 comparisons. 
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Complexity Analysis (cont’d)

• Best case: This is when 𝐾 is in 𝐴 0 . The 
complexity is 𝑂 1 .

• Worst case: This is when 𝐾 is in 𝐴 𝑛 − 1 . The 
amount of work is 𝑎𝑛 + 𝑏 where 𝑎 and 𝑏 are 
constants. Therefore the complexity is 𝑂 𝑛 .

• Average case: Let us assume that each key is 
equally likely to be used in a search. The average 
can then be computed by taking the total of all 
the work done for finding all the different keys  
and dividing by 𝑛.
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Complexity Analysis (cont’d)

• The work needed to find the 𝑖-th key 𝐾𝑖 is of the 
form 𝑎 𝑖 + 𝑏 for some constants 𝑎 and 𝑏. 
Therefore:

𝑇𝑜𝑡𝑎𝑙 = σ𝑖=1
𝑛 𝑎𝑖 + 𝑏 = 𝑎σ𝑖=1

𝑛 𝑖 + σ𝑖=1
𝑛 𝑏 =

= 𝑎
𝑛(𝑛 + 1)

2
+ 𝑏𝑛

• Now the average is:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙

𝑛
= 𝑎

𝑛+1

2
+ 𝑏 =

𝑎

2
𝑛 +

𝑎

2
+ 𝑏

• Therefore, the average is 𝑂 𝑛 .
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Binary Search

• For sorted arrays, we have an algorithm more 
efficient than sequential search: binary 
search.
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Binary Search (cont’d)

• The problem to be addressed in binary searching is to find 
the position of a search key K in an ordered array A[0:n-
1] of distinct keys arranged in ascending order:
A[0] < A[1] < … < A[n-1].

• The algorithm chooses the key in the middle of A[0:n-
1], which is located at A[Middle], where 
Middle=(0+(n-1))/2, and compares the search key K
and A[Middle].

• If K==A[Middle], the search terminates successfully.
• If K < A[Middle] then further search is conducted 

among the keys to the left of A[Middle].
• If K > A[Middle] then further search is conducted 

among the keys to the right of A[Middle].
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Iterative Binary Search

int BinarySearch(Key K)

{

int L, R, Midpoint;

/* Initializations */

L=0;

R=n-1;

/* While the interval L:R is  non-empty, test key K against the middle key */

while (L<=R){

Midpoint=(L+R)/2;

if (K==A[Midpoint]){

return Midpoint;

} else if (K > Midpoint) {

L=Midpoint+1;

} else {

R=Midpoint-1;

}

}

/* If the search interval became empty, key K was not found */

return -1;

}
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Recursive Binary Search

int BinarySearch (Key K, int L, int R)

{

/* To find the position of the search key K in the subarray

A[L:R]. Note: To search for K in A[0:n-1], the initial call 

is BinarySearch(K, 0, n-1) */

int Midpoint;

Midpoint=(L+R)/2;

if (L>R){

return -1;

} else if (K==A[Midpoint]){

return Midpoint;

} else if (K > A[Midpoint]){

return BinarySearch(K, Midpoint+1, R);

} else {

return BinarySearch(K, L, Midpoint-1);

}

}
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Complexity

• Let us compute the running time of recursive binary 
search.

• We call an entry of our array a candidate if, at the 
current stage of the algorithm, we cannot rule out that 
this entry has key equal to K.

• We observe that a constant amount of primitive 
operations are executed at each recursive call of 
function BinarySearch.

• Hence the running time is proportional to the number 
of recursive calls performed.

• Moreover, the number of remaining candidates is 
reduced by at least half with each recursive call.
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Complexity (cont’d)

• Initially, the number of candidate entries is 𝑛. After the 
first call to BinarySearch, it is at most 

𝑛

2
. After the 

second call, it is at most 
𝑛

4
and so on.

• In general, after the 𝑖-th call to BinarySearch, the 
number of candidate entries is at most 

𝑛

2𝑖
.

• In the worst case (unsuccessful search), the recursive 
calls stop when there are no more candidate entries. 
Hence, the maximum number of recursive calls 
performed, is the smallest integer 𝑚 such that 

𝑛

2𝑚
< 1.
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Complexity (cont’d)

• Equivalently, 2𝑚 > 𝑛.

• Taking logarithms in base 2, we have 𝑚 >
log 𝑛 .

• Thus, we have 𝑚 = log 𝑛 +1 which implies 
that the complexity of recursive 
BinarySearch is 𝑂(log 𝑛).

• The complexity of iterative BinarySearch
is also 𝑂(log 𝑛).
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Selection Sorting Algorithm

void SelectionSort(InputArray A)

{   

int MinPosition, temp, i, j;

for (i=n-1; i>0; --i){

MinPosition=i;

for (j=0; j<i; ++i){

if (A[j] < A[MinPosition]){

MinPosition=j;

}

}

temp=A[i]; 

A[i]=A[MinPosition]; 

A[MinPosition]=temp;

}

}
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Complexity Analysis of SelectionSort

• We start from the inner for statement. The 
if statement inside the for takes a constant 
amount of time 𝑎. Thus, the for statement 
takes 𝑖𝑎 time units.

• Let us now consider the outer for. The 
statements inside this for, except the inner 
for, take a constant amount of time 𝑏. Thus 
all the statements inside the outer for take 
time 𝑎𝑖 + 𝑏.
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Complexity Analysis (cont’d)

• The outer for takes time 



𝑖=1

𝑛−1

(𝑎𝑖 + 𝑏) = 𝑎

𝑖=1

𝑛−1

𝑖 +

𝑖=1

𝑛−1

𝑏 =

= 𝑎
𝑛 − 1 𝑛

2
+ 𝑛 − 1 𝑏 =

=
𝑎

2
𝑛2 + 𝑏 −

𝑎

2
𝑛 − 𝑏

• Therefore, the time complexity of the algorithm is 
𝑂 𝑛2 .
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Recursive SelectionSort

/* FindMin is an auxiliary function used by the Selection sort below */

int FindMin(InputArray A, int n)

{  

int i,j=n;

for (i=0; i<n; ++i) if (A[i]<A[j]) j=i;

return j;

}

void SelectionSort(InputArray A, int n)

{

int MinPosition, temp;

if (n>0){

MinPosition=FindMin(A,n);

temp=A[n]; A[n]=A[MinPosition]; A[MinPosition]=temp;

SelectionSort(A, n-1)

}

}
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Analysis of Recursive SelectionSort

• To use this recursive version of 
SelectionSort to perform selection sorting 
on the array A[0:n-1], we make the function 
call SelectionSort(A,n-1).

• The first thing we need to do is to analyze the 
running time of function FindMin which finds 
the position of the smallest element in the array 
A[0:n].

• It is easy to see that the time for this function is 
𝑎𝑛 + 𝑏1for suitable constants 𝑎 and 𝑏1.
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Analysis of Recursive SelectionSort
(cont’d)

• We now analyze the running time of recursive function 
SelectionSort.

• Let 𝑇(𝑛) stand for the cost, in time units, of calling 
SelectionSort on A[0:n]. 

• Then the costs in SelectionSort are as follows:

if (n>0){

Cost 𝑎𝑛 + 𝑏1
Cost 𝑏2
Cost 𝑇 𝑛 − 1

}

Data Structures and Programming 
Techniques

57



Analysis of Recursive SelectionSort
(cont’d)

• If 𝑏 = 𝑏1 + 𝑏2 then the following recurrence 
relation holds for 𝑛 > 0:

𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑇(𝑛 − 1)

• The base case of this recurrence relation is 
𝑇 0 = 𝑐 where 𝑐 is the cost of executing 
SelectionSort(A,0).

• To solve such recurrence relations, we can use 
a method called unrolling. 
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Analysis of Recursive SelectionSort
(cont’d)

𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑇 𝑛 − 1
𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑇 𝑛 − 2

𝑇 𝑛 = 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑎 𝑛 − 2 + 𝑏 + 𝑇 𝑛 − 3
…

𝑇 𝑛
= 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑎 𝑛 − 2 + 𝑏 +⋯+ 𝑎 ∗ 1 + 𝑏
+ 𝑇 0
𝑇 𝑛
= 𝑎𝑛 + 𝑏 + 𝑎 𝑛 − 1 + 𝑏 + 𝑎 𝑛 − 2 + 𝑏 +⋯+ 𝑎 ∗ 1 + 𝑏
+ 𝑐
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Analysis of Recursive SelectionSort
(cont’d)

• Rearranging some of the terms so that all those with 
coefficients 𝑎 and 𝑏 are collected together, we have:

𝑇 𝑛 = 𝑎𝑛 + 𝑎 𝑛 − 1 + 𝑎 𝑛 − 2 +⋯+ 𝑎 + 𝑛𝑏 + 𝑐

𝑇 𝑛 =

𝑖=1

𝑛

(𝑎𝑖) + 𝑛𝑏 + 𝑐

= 𝑎
𝑛(𝑛 + 1)

2
+ 𝑛𝑏 + 𝑐

=
𝑎

2
𝑛2 +

𝑎

2
+ 𝑏 𝑛 + 𝑐
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Analysis of Recursive SelectionSort
(cont’d)

• Therefore 𝑇(𝑛) but also 𝑇(𝑛 − 1) is 𝑂 𝑛2 .
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The Towers of Hanoi

1 2 3
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A Recursive Solution to the Towers of 
Hanoi

void MoveTowers(int n, int start, int finish, int spare)

{

if (n==1){

printf(“Move a disk from peg %1d to peg %1d\n”, start, 
finish);

} else {

MoveTowers(n-1, start, spare, finish);

printf(“Move a disk from peg %1d to peg %1d\n”, start, 
finish);

MoveTowers(n-1, spare, finish, start);

}

}
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Analysis of Towers of Hanoi

• Let 𝑛 be the number of disks to be moved. 
Then the running time 𝑇(𝑛) of the algorithm 
is given by the following recurrence relations:

𝑇 1 = 𝑎
𝑇 𝑛 = 𝑏 + 2𝑇 𝑛 − 1

• We will solve these recurrence relations using 
the technique of unrolling plus summation.
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Analysis of Towers of Hanoi (cont’d)

𝑇 𝑛 = 𝑏 + 2𝑇 𝑛 − 1

𝑇 𝑛 = 𝑏 + 2 𝑏 + 2𝑇 𝑛 − 2

𝑇 𝑛 = 𝑏 + 2𝑏 + 22𝑇(𝑛 − 2)

𝑇 𝑛 = 𝑏 + 2𝑏 + 22 𝑏 + 2𝑇 𝑛 − 3

𝑇 𝑛 = 𝑏 + 2𝑏 + 22𝑏 + 23𝑇 𝑛 − 3
⋯

𝑇 𝑛 = 𝑏 + 2𝑏 + 22𝑏 +⋯+ 2 𝑖−1 𝑏 + 2𝑖𝑇 𝑛 − 𝑖
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Analysis of Towers of Hanoi (cont’d)

• When 𝑖 = 𝑛 − 1, we have:

𝑇 𝑛 − 𝑖 = 𝑇 𝑛 − 𝑛 − 1 = 𝑇 𝑛 − 𝑛 + 1 = 𝑇 1 = 𝑎

• Therefore, 𝑇 𝑛 can be expressed as follows:

𝑇 𝑛 = 20𝑏 + 21𝑏 + 22𝑏 +⋯+ 2 𝑛−2 𝑏 + 2 𝑛−1 𝑎 =

= σ𝑖=0
𝑛−2 2𝑖𝑏 + 2(𝑛−1)𝑎=

= 𝑏

𝑖=0

𝑛−2

2𝑖 + 2(𝑛−1)𝑎
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Analysis of Towers of Hanoi (cont’d)

• Now we can see that the sum is a standard 
geometric progression. So we will use the fact 

that σ𝑘=0
𝑚 𝑥𝑘 =

𝑥𝑚+1−1

𝑥−1
to conclude the 

following:



𝑖=0

𝑛−2

2𝑖 =
2(𝑛−1) − 1

2 − 1
= 2(𝑛−1) − 1
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Analysis of Towers of Hanoi (cont’d)

• Therefore:

𝑇 𝑛 = 𝑏 2(𝑛−1) − 1 + 2(𝑛−1)𝑎

= 𝑎 + 𝑏 2(𝑛−1) − 𝑏 =
𝑎 + 𝑏

2
2𝑛 − 𝑏

• Finally, we can see that 𝑇(𝑛) is 𝑂 2𝑛 .
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What 𝑂-notation Does Not Tell You

• 𝑂-notation does not apply to small problem 
sizes because in this case the constants might 
dominate the other terms.

• One can use experimental testing to select 
the best algorithm in this case.

• Experimental testing is also useful if we want 
to compare algorithms that are in the same 
complexity class.
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Experimental Testing of Algorithms
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Space Complexity

• In a similar way, we can measure the space 
complexity of an algorithm.
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Other notations

• There also other complexity notations such as 
𝑜 𝑛 , Θ 𝑛 , Ω 𝑛 ,ω 𝑛 .

• More details in the Algorithms course.
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Readings

• T. A. Standish. Data Structures, Algorithms and 
Software Principles in C. 
– Sections 5.6  and Chapter 6

• Robert Sedgewick. Αλγόριθμοι σε C.
– Κεφ. 2

• M.T. Goodrich, R. Tamassia and D. Mount. 
Data Structures and Algorithms in C++. 2nd

edition.
– Section 9.3
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